论文标题
指针图网络
Pointer Graph Networks
论文作者
论文摘要
图形神经网络(GNN)通常应用于假定已知的静态图。这种静态输入结构通常完全是通过对机器学习从业者的见解来告知的,并且可能对GNN所解决的实际任务不是最佳的。在没有可靠的领域专业知识的情况下,人们可能会诉诸推断潜在的图形结构,这通常是由于可能的图形的巨大搜索空间,这通常很困难。在这里,我们介绍了指针图网络(PGN),该网络(PGN)增强或图形具有其他推断边缘,以提高模型的概括能力。 PGN允许每个节点动态地指向另一个节点,然后将消息传递到这些指针上。这种适应能力的图形结构的稀疏性使学习可以进行学习,同时仍然足够表达以模拟复杂的算法。至关重要的是,指向机制直接监督了对经典数据结构的长期操作序列的模型,从而结合了理论计算机科学的有用的结构归纳偏见。定性地,我们证明PGN可以学习基于指针的数据结构的可行变体,即脱节设置工会和链接/割树。 PGNS将分布式分布概括为在动态图连接任务上的5倍较大的测试输入,优于无限制的GNN和深度集。
Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model generalisation ability. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets.