论文标题

$^1 $ h-nmr偶极 - 偶极子放松在流体中:放松个人$^1 $ h-$^1 $ h对与分子模式的放松

$^1$H-NMR Dipole-Dipole Relaxation in Fluids: Relaxation of Individual $^1$H-$^1$H Pairs versus Relaxation of Molecular Modes

论文作者

Asthagiri, D., Chapman, Walter G., Hirasaki, George J., Singer, Philip M.

论文摘要

分子液的分子内$^1 $^1 $ h-nmr偶极 - 偶极子弛豫传统上是在NMR内分子内弛豫的Bloemben-Purcell-t-cound(BPP)中解释的。 BPP理论借鉴了Debye的理论,用于描述$^1 $ h-$ h-$^1 $ h对的旋转扩散,并预测了$^1 $ h-$ h-$^1 $ h偶极 - 偶极 - 偶极 - 偶极自动相关函数的单相衰减。使用分子动力学(MD)模拟,我们表明,对于$ n $ heptane和Water,情况并非如此。特别是,单个$^1 $ h-$ h-$ h-$ h的自相关函数本身表明了丰富的指数行为,这意味着旋转相关时间的分布。但是,对于高对称分子新苯乙烷,单个$^1 $ h-$^1 $ h内分子对确实符合BPP的描述,这表明分子对称性在协助与BPP模型的协议中起着重要作用。 $ n $ heptane,Water和Neopentane的分子间自相关功能也不承认个人$^1 $ h-$^1 $ h-$^1 $ h-$^1 $ H分子间对以不同的初始分离。我们建议根据分子模式扩展自动相关函数,在分子模式下,分子模式确实具有指数式的弛豫行为。谨慎,可以倒入第一类的弗雷德霍尔姆积分方程,以恢复分子模式的概率分布。注意到这种方法的优势和局限性。

The intra-molecular $^1$H-NMR dipole-dipole relaxation of molecular fluids has traditionally been interpreted within the Bloembergen-Purcell-Pound (BPP) theory of NMR intra-molecular relaxation. The BPP theory draws upon Debye's theory for describing the rotational diffusion of the $^1$H-$^1$H pair and predicts a mono-exponential decay of the $^1$H-$^1$H dipole-dipole autocorrelation function between distinct spin pairs. Using molecular dynamics (MD) simulations, we show that for both $n$-heptane and water this is not the case. In particular, the autocorrelation function of individual $^1$H-$^1$H intra-molecular pairs itself evinces a rich stretched-exponential behavior, implying a distribution in rotational correlation times. However for the high-symmetry molecule neopentane, the individual $^1$H-$^1$H intra-molecular pairs do conform to the BPP description, suggesting an important role of molecular symmetry in aiding agreement with the BPP model. The inter-molecular autocorrelation functions for $n$-heptane, water, and neopentane also do not admit a mono-exponential behavior of individual $^1$H-$^1$H inter-molecular pairs at distinct initial separations. We suggest expanding the auto-correlation function in terms of molecular modes, where the molecular modes do have an exponential relaxation behavior. With care, the resulting Fredholm integral equation of the first kind can be inverted to recover the probability distribution of the molecular modes. The advantages and limitations of this approach are noted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源