论文标题

开发具有生成时间序列模型的随机交通环境,以提高自动驾驶剂的概括能力

Development of A Stochastic Traffic Environment with Generative Time-Series Models for Improving Generalization Capabilities of Autonomous Driving Agents

论文作者

Ozturk, Anil, Gunel, Mustafa Burak, Dal, Melih, Yavas, Ugur, Ure, Nazim Kemal

论文摘要

自动化车道更换是高级自动驾驶系统的关键功能。近年来,对交通模拟器进行培训的强化学习(RL)算法在计算车道更改政策方面取得了成功的结果,这些政策在安全性,敏捷性和补偿交通不确定性之间取得了平衡。但是,许多RL算法都表现出模拟器偏差,并且在简单模拟器上训练的政策并不能很好地概括为现实的交通情况。在这项工作中,我们通过在现实生活轨迹数据上训练生成的对手网络(GAN)来开发数据驱动的流量模拟器。模拟器生成的随机轨迹类似于车辆之间的现实生活交通交互,这使得可以在更丰富和现实的场景上训练RL代理。我们通过模拟证明,与对简单规则驱动的模拟器培训的RL代理相比,经过基于GAN的流量模拟器训练的RL代理具有更强的概括能力。

Automated lane changing is a critical feature for advanced autonomous driving systems. In recent years, reinforcement learning (RL) algorithms trained on traffic simulators yielded successful results in computing lane changing policies that strike a balance between safety, agility and compensating for traffic uncertainty. However, many RL algorithms exhibit simulator bias and policies trained on simple simulators do not generalize well to realistic traffic scenarios. In this work, we develop a data driven traffic simulator by training a generative adverserial network (GAN) on real life trajectory data. The simulator generates randomized trajectories that resembles real life traffic interactions between vehicles, which enables training the RL agent on much richer and realistic scenarios. We demonstrate through simulations that RL agents that are trained on GAN-based traffic simulator has stronger generalization capabilities compared to RL agents trained on simple rule-driven simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源