论文标题

基于Bose-Hubbard模型的原子陀螺仪中的最佳量子相估计

Optimal quantum phase estimation in an atomic gyroscope based on Bose-Hubbard model

论文作者

Shao, Lei, Li, Weiyao, Wang, Xiaoguang

论文摘要

我们研究了基于三个位点玻色式模型的原子陀螺仪的最佳量子态。在先前的研究中,诸如不相关状态,蝙蝠状态和中午状态等各种状态被用作探测状态来估计相位不确定性。在本文中,我们提出了一个Hermitian操作员$ \ Mathcal {h} $和等效的统一参数化转换,以计算任何初始状态的量子Fisher信息。利用这种等效的统一参数化转换,我们可以寻求最佳状态,该状态可为无损和有损条件提供最大的量子渔民信息。结果,我们发现纠缠的甚至挤压状态(EES)可以显着提高中等损失率的精度。

We investigate the optimal quantum state for an atomic gyroscope based on a three-site Bose-Hubbard model. In previous studies, various states such as the uncorrelated state, the BAT state and the NOON state are employed as the probe states to estimate the phase uncertainty. In this article, we present a Hermitian operator $\mathcal{H}$ and an equivalent unitary parametrization transformation to calculate the quantum Fisher information for any initial states. Exploiting this equivalent unitary parametrization transformation, we can seek the optimal state which gives the maximal quantum Fisher information on both lossless and lossy conditions. As a result, we find that the entangled even squeezed state (EESS) can significantly enhance the precision for moderate loss rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源