论文标题

生长 - 覆盖 - 凝集方程,带有无限的凝血核

Growth--fragmentation--coagulation equations with unbounded coagulation kernels

论文作者

Banasiak, Jacek, Lamb, Wilson

论文摘要

在本文中,我们证明了连续生长的全局时间溶解性 - 覆盖构度 - 凝集方程与无界凝血核,在具有足够高阶的有限矩的功能空间中。主要工具是最近确定的线性生长的矩正规化的结果 - 差异半群,它使我们可以考虑凝血核的凝结核,其大型簇的生长受到正则化的良好方式控制的,与半群时的情况相似。

In this paper we prove the global in time solvability of the continuous growth--fragmentation--coagulation equation with unbounded coagulation kernels, in spaces of functions having finite moments of sufficiently high order. The main tool is the recently established result on moment regularization of the linear growth--fragmentation semigroup that allows us to consider coagulation kernels whose growth for large clusters is controlled by how good the regularization is, in a similar manner to the case when the semigroup is analytic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源