论文标题
$ \ mathbb {t}^d \ times \ mathbb {r} $在$ \ mathbb上随机步行的ra固定措施
Radon stationary measures for a random walk on $\mathbb{T}^d \times \mathbb{R}$
论文作者
论文摘要
我们对$ \ mathbb {t}^d \ times \ mathbb {r} $进行随机步行的ra固定度量进行了分类。这次步行是通过$ sl_ {d}(\ Mathbb {z})$的随机操作实现的,在$ \ Mathbb {t}^d $ component上,并在$ \ mathbb {r} $ component上的翻译。我们在假设不可约性和复发的假设下表明了ra的固定措施的刚度和均匀性。
We classify Radon stationary measures for a random walk on $\mathbb{T}^d \times \mathbb{R}$. This walk is realised by a random action of $SL_{d}(\mathbb{Z})$ on the $\mathbb{T}^d$ component, coupled with a translation on the $\mathbb{R}$ component. We show, under assumptions of irreducibility and recurrence, the rigidity and homogeneity of Radon ergodic stationary measures.