论文标题

dfraud3-多组件欺诈检测Freef Cold-Start

DFraud3- Multi-Component Fraud Detection freeof Cold-start

论文作者

Shehnepoor, Saeedreza, Togneri, Roberto, Liu, Wei, Bennamoun, Mohammed

论文摘要

欺诈审查检测是一个热门研究主题。冷启动是一个特别新的但重大的问题,指的是检测系统未能识别新用户的真实性。最先进的解决方案采用翻译知识嵌入方法(TRANSE)来对审查系统组件的相互作用进行建模。但是,这些方法遭受了Transein处理N-1关系的局限性以及单个分类任务的狭窄范围,即仅检测欺诈者。在本文中,我们将审查系统建模为一种异质信息网络(HIN),它可以通过附近的节点的汇总特征对每个组件进行独特的表示,并在审核数据上执行图形归纳学习。带有图形诱导的HIN有助于解决伪装问题(欺诈者,以及真正的评论),该问题与寒冷启动相结合时,它显示出更为严重的问题,即带有真正首次评论的新欺诈者。在这项研究中,不仅要专注于一个组件,而是检测欺诈评论或欺诈用户(欺诈者),还可以为每个组件学习矢量表示,从而实现多组分分类。换句话说,我们能够检测出欺诈评论,欺诈者和欺诈目标,因此我们的方法是Dfraud3的名称。 Dfraud3在Yelp上表现出比艺术状态的显着准确性提高13%。

Fraud review detection is a hot research topic inrecent years. The Cold-start is a particularly new but significant problem referring to the failure of a detection system to recognize the authenticity of a new user. State-of-the-art solutions employ a translational knowledge graph embedding approach (TransE) to model the interaction of the components of a review system. However, these approaches suffer from the limitation of TransEin handling N-1 relations and the narrow scope of a single classification task, i.e., detecting fraudsters only. In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component and performs graph inductive learning on the review data through aggregating features of nearby nodes. HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews. In this research, instead of focusing only on one component, detecting either fraud reviews or fraud users (fraudsters), vector representations are learnt for each component, enabling multi-component classification. In other words, we are able to detect fraud reviews, fraudsters, and fraud-targeted items, thus the name of our approach DFraud3. DFraud3 demonstrates a significant accuracy increase of 13% over the state of the art on Yelp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源