论文标题

用于寻找多元化和经验丰富的团体的超颗粒聚类

Hypergraph Clustering for Finding Diverse and Experienced Groups

论文作者

Amburg, Ilya, Veldt, Nate, Benson, Austin R.

论文摘要

在组建团队或一群人时,我们经常在特定任务中寻求专业知识的平衡,同时保持每个组中的技能多样性。在这里,我们认为找到多样化和经验丰富的群体的问题是在具有多种边缘类型的超图中的聚类。输入数据是具有多种超边缘类型的超图 - 表示个人组的过去经历的信息 - 输出是节点组。与公平或平衡聚类的相关问题相反,我们根据过去的经验(例如,受保护的属性)对多样性进行建模,并建立在参与边缘类型方面具有经验和多样性的群体。换句话说,多样性和经验都是从超增工的类型中衡量的。 我们的聚类模型基于基于边缘的HyperGraph集群目标的正则版本,我们还展示了天真的目标实际上没有多样性体验的权衡。尽管我们的目标函数是NP的优化,但我们设计了一种有效的2-辅助算法,还展示了如何计算正规化超参数的界限,从而导致有意义的多样性经验 - 经验折衷。我们演示了该框架在在线评论平台中的应用,其目标是为产品类型策划用户评论集。在这种情况下,“体验”对应于熟悉产品类型的用户和对相关产品的用户的“多样性”对应。

When forming a team or group of individuals, we often seek a balance of expertise in a particular task while at the same time maintaining diversity of skills within each group. Here, we view the problem of finding diverse and experienced groups as clustering in hypergraphs with multiple edge types. The input data is a hypergraph with multiple hyperedge types -- representing information about past experiences of groups of individuals -- and the output is groups of nodes. In contrast to related problems on fair or balanced clustering, we model diversity in terms of variety of past experience (instead of, e.g., protected attributes), with a goal of forming groups that have both experience and diversity with respect to participation in edge types. In other words, both diversity and experience are measured from the types of the hyperedges. Our clustering model is based on a regularized version of an edge-based hypergraph clustering objective, and we also show how naive objectives actually have no diversity-experience tradeoff. Although our objective function is NP-hard to optimize, we design an efficient 2-approximation algorithm and also show how to compute bounds for the regularization hyperparameter that lead to meaningful diversity-experience tradeoffs. We demonstrate an application of this framework in online review platforms, where the goal is to curate sets of user reviews for a product type. In this context, "experience" corresponds to users familiar with the type of product, and "diversity" to users that have reviewed related products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源