论文标题
集成的重播欺骗意识与文本无关的扬声器验证
Integrated Replay Spoofing-aware Text-independent Speaker Verification
论文作者
论文摘要
许多研究成功地开发了说话者验证或演示攻击检测系统。但是,整合这两个任务的研究仍然是初步阶段。在本文中,我们提出了两种构建扬声器验证和演示攻击检测系统集成系统的方法:一种端到端整体化方法和后端模块化方法。第一种方法同时使用常用功能使用多任务学习来训练扬声器识别,演示攻击检测和集成系统。但是,通过实验,我们假设执行说话者验证和演示攻击检测所需的信息可能会有所不同,因为说话者验证系统试图从扬声器嵌入中删除特定于设备的信息,而演示攻击检测系统利用此类信息。因此,我们使用单独的深神经网络(DNN)提出了一种后端模块化方法,以进行说话者验证和表现攻击检测。这种方法具有您的输入组件:两个说话者嵌入(用于注册和测试)和展示攻击的预测。实验是使用ASVSPOOF 2017-V2数据集进行的,其中包括有关说话者验证和演示攻击检测的官方试验。与传统的说话者验证系统相比,提出的后端方法证明,相同的综合试验错误率相对提高了21.77%。
A number of studies have successfully developed speaker verification or presentation attack detection systems. However, studies integrating the two tasks remain in the preliminary stages. In this paper, we propose two approaches for building an integrated system of speaker verification and presentation attack detection: an end-to-end monolithic approach and a back-end modular approach. The first approach simultaneously trains speaker identification, presentation attack detection, and the integrated system using multi-task learning using a common feature. However, through experiments, we hypothesize that the information required for performing speaker verification and presentation attack detection might differ because speaker verification systems try to remove device-specific information from speaker embeddings, while presentation attack detection systems exploit such information. Therefore, we propose a back-end modular approach using a separate deep neural network (DNN) for speaker verification and presentation attack detection. This approach has thee input components: two speaker embeddings (for enrollment and test each) and prediction of presentation attacks. Experiments are conducted using the ASVspoof 2017-v2 dataset, which includes official trials on the integration of speaker verification and presentation attack detection. The proposed back-end approach demonstrates a relative improvement of 21.77% in terms of the equal error rate for integrated trials compared to a conventional speaker verification system.