论文标题
深层神经网络中的神经进化:当前的趋势和未来挑战
Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges
论文作者
论文摘要
已经应用了各种方法,用于人工深神经网络(DNN)的建筑构型和学习或培训。这些方法在大多数问题和应用中DNN的成功或失败中起着至关重要的作用。进化算法(EAS)作为一种计算可行的方法,用于自动优化和训练DNNS。神经进化是一个术语,描述了使用EAS对DNN的自动配置和培训的这些过程。尽管文献中存在许多作品,但目前尚无综合调查仅关注DNN中使用神经进化方法的优势和局限性。长时间缺乏此类调查会导致一个脱节和分散的领域,以阻止DNNS研究人员在自己的研究中采用神经进化方法,从而导致改善绩效的机会,并在现实世界中深度学习问题中更广泛地应用。本文对最先进的作品进行了全面的调查,讨论和评估,以使用EAS进行建筑配置和DNN的培训。根据这项调查,本文强调了神经进化中最相关的当前问题和挑战,并确定了多个有希望的未来研究方向。
A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation and training of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. While many works exist in the literature, no comprehensive surveys currently exist focusing exclusively on the strengths and limitations of using neuroevolution approaches in DNNs. Prolonged absence of such surveys can lead to a disjointed and fragmented field preventing DNNs researchers potentially adopting neuroevolutionary methods in their own research, resulting in lost opportunities for improving performance and wider application within real-world deep learning problems. This paper presents a comprehensive survey, discussion and evaluation of the state-of-the-art works on using EAs for architectural configuration and training of DNNs. Based on this survey, the paper highlights the most pertinent current issues and challenges in neuroevolution and identifies multiple promising future research directions.