论文标题
关于相对痕量公式的稳定:下降和基本引理
On the stabilization of relative trace formulae: descent and the fundamental lemma
论文作者
论文摘要
通过研究自动形式时期和相对痕量公式的研究,我们开发了研究轨道积分的理论,以研究在$ p $ adic field $ f $上的一般对称空间的基本引理中产生的轨道积分。更确切地说,我们证明,$ f $上的连接的对称空间具有拓扑约旦分解的概念,这可能引起独立的兴趣,并建立了Kazhdan的相对版本的相对版本,在Langlands-Shelstad的证明中起着至关重要的作用。 作为我们的主要应用,我们使用这些结果来证明Hecke代数的单位元素的内窥镜基本引理与单一弗里德伯格 - 雅克克相关的对称空间。
Motivated by the study of periods of automorphic forms and relative trace formulae, we develop the theory of descent necessary to study orbital integrals arising in the fundamental lemma for a general class of symmetric spaces over a $p$-adic field $F$. More precisely, we prove that a connected symmetric space over $F$ enjoys a notion of topological Jordan decomposition, which may be of independent interest, and establish a relative version of a lemma of Kazhdan that played a crucial role in the proof of the Langlands-Shelstad fundamental lemma. As our main application, we use these results to prove the endoscopic fundamental lemma for the unit element of the Hecke algebra for the symmetric space associated to unitary Friedberg-Jacquet periods.