论文标题

二维磁铁中的高阶交换相互作用

Higher-order exchange interactions in two-dimensional magnets

论文作者

Kartsev, Alexey, Augustin, Mathias, Evans, Richard F. L., Novoselov, Kostya S., Santos, Elton J. G.

论文摘要

在最近发现的范德华材料中,磁性材料在研究真正二维的基本旋转相互作用的研究中开辟了新的途径。一个最重要的问题是,除了双线性海森堡交换以外的高阶相互作用对几个原子厚化合物的磁性具有什么影响。在这里,我们证明了二秒交换相互作用,这是非生物耦合的最简单,最自然的形式,在分层磁体的磁性特性中扮演关键作用。使用非扰动分析技术的组合,非连续性第一原理方法和结合了高阶交换的经典蒙特卡洛计算,我们表明,包括磁各向异性,自旋波隙和拓扑旋转式诱变在内的几种数量固有地被重新纳入了层次,从而实现了进一步的热稳定性。我们开发了一种旋转的哈密顿量,还包含反对称交换(例如dzyaloshinskii-moriya相互作用),以成功地使目前正在争论的许多观察中成功地合理化了几种化合物的非化合物,尽管尽管有强烈的磁各向异性,但强烈的磁性磁性,2D MAGNON SPACTRUM的2D型磁铁和测量范围均匀的测量和定位。我们的结果为新型2D磁性设计策略的通用高阶交换理论奠定了基础。

Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源