论文标题

异质种群的因果方向测试

A Causal Direction Test for Heterogeneous Populations

论文作者

Nia, Vahid Partovi, Li, Xinlin, Asgharian, Masoud, Hu, Shoubo, Chen, Zhitang, Geng, Yanhui

论文摘要

概率专家系统通过方向图形模型模仿了人类专家的决策能力。构建此类系统的第一步是了解数据生成机制。为此,人们可能会尝试将多元分布分解为几个条件的产物,并将黑盒机学习预测模型发展为透明的因果和效应发现。大多数因果模型都假设一个同质人群,这一假设可能无法在许多应用中持有。我们表明,当违反同质性假设时,基于这种假设开发的因果模型可能无法识别正确的因果方向。我们通过使用$ k $ - 均值类型聚类算法对常用的因果方向测试统计量进行调整,其中从收集的数据中估算了标签和组件数来调整测试统计量。我们的仿真结果表明,提出的调整显着提高了因果方向测试统计数据的性能。我们研究了我们提出的测试统计量的大型样本行为,并使用实际数据证明了所提出的方法的应用。

A probabilistic expert system emulates the decision-making ability of a human expert through a directional graphical model. The first step in building such systems is to understand data generation mechanism. To this end, one may try to decompose a multivariate distribution into product of several conditionals, and evolving a blackbox machine learning predictive models towards transparent cause-and-effect discovery. Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications. We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction. We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm where both the labels and the number of components are estimated from the collected data to adjust the test statistic. Our simulation result show that the proposed adjustment significantly improves the performance of the causal direction test statistic for heterogeneous data. We study large sample behaviour of our proposed test statistic and demonstrate the application of the proposed method using real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源