论文标题
DoubleU NET:医学图像分割的深度卷积神经网络
DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation
论文作者
论文摘要
语义图像分割是标记图像的每个像素及其相应类的过程。基于编码器的方法,例如U-NET及其变体,是解决医疗图像分割任务的流行策略。为了提高U-NET在各种细分任务上的性能,我们提出了一个名为Doubleu-Net的新型体系结构,这是两个彼此堆叠的两个U-NET架构的组合。第一个U-NET使用预先训练的VGG-19作为编码器,该编码器已经从ImageNet中学到了功能,并且可以轻松地将其传输到另一个任务。为了有效地捕获更多的语义信息,我们在底部添加了另一个U-NET。我们还采用了极空的金字塔池(ASPP)来捕获网络中的上下文信息。我们已经使用四个医学分割数据集评估了双NET,涵盖了各种成像方式,例如结肠镜检查,皮肤镜检查和显微镜检查。 MICCAI 2015分割挑战,CVC-ClinicDB,2018年数据科学碗挑战和病变边界细分数据集的实验表明,双NET的表现优于U-NET和基线模型。此外,DoubleU-NET会产生更准确的分割掩码,尤其是在CVC-ClinicDB和Miccai 2015分段挑战数据集的情况下,它们具有较小的图像,例如较小和平坦的息肉。这些结果表明了对现有U-NET模型的改进。在各种医学图像分割数据集上产生的令人鼓舞的结果表明,双NET可以用作医学图像分割和跨数据库评估测试的强基线,以衡量深度学习模型的普遍性(DL)模型。
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve the performance of U-Net on various segmentation tasks, we propose a novel architecture called DoubleU-Net, which is a combination of two U-Net architectures stacked on top of each other. The first U-Net uses a pre-trained VGG-19 as the encoder, which has already learned features from ImageNet and can be transferred to another task easily. To capture more semantic information efficiently, we added another U-Net at the bottom. We also adopt Atrous Spatial Pyramid Pooling (ASPP) to capture contextual information within the network. We have evaluated DoubleU-Net using four medical segmentation datasets, covering various imaging modalities such as colonoscopy, dermoscopy, and microscopy. Experiments on the MICCAI 2015 segmentation challenge, the CVC-ClinicDB, the 2018 Data Science Bowl challenge, and the Lesion boundary segmentation datasets demonstrate that the DoubleU-Net outperforms U-Net and the baseline models. Moreover, DoubleU-Net produces more accurate segmentation masks, especially in the case of the CVC-ClinicDB and MICCAI 2015 segmentation challenge datasets, which have challenging images such as smaller and flat polyps. These results show the improvement over the existing U-Net model. The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.