论文标题
免费分区功能和平均全息二元性
Free partition functions and an averaged holographic duality
论文作者
论文摘要
我们研究了两个维度的游离玻感CFT的圆环分区功能。在Narain Moduli上集成定义了合奏平均的免费CFT。我们计算平均分区函数,并表明它可以在三个维度上重新解释为拓扑。这一结果使我们推测,在二维上平均的自由CFT在三维重力的外来理论上是双重双重的,$ u(1)^c \ times u(1)u(1)^c $对称性和复合边界重力。此外,对于小型中央电荷$ c $,我们使用旋转模块化的自举,在自由CFT的光谱间隙上获得一般限制,构建了具有较大间隙的Narain紧凑型的示例,并找到与单个自我双重玻色子相对应的分析自举函数。
We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with $U(1)^c \times U(1)^c$ symmetry and a composite boundary graviton. Additionally, for small central charge $c$, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.