论文标题
一种深度学习方法,用于类星体连续预测
A Deep Learning Approach to Quasar Continuum Prediction
论文作者
论文摘要
我们提出了一种新颖的智能类星体连续神经网络(IQNET),预测了其余框架波长范围1020 Angstroms $ \leqλ\ leq leq $ 1600埃克斯特群的内在连续体。我们使用Hubble Spectroscopic Legacy Archive的低分辨率远程望远镜/宇宙起源紫外线紫外线光谱($ z \ sim 0.2 $)训练该网络,并将其应用于不同天文学调查的准continua。我们利用在其余框架波长范围[1020,1600]埃的hsla Quasar光谱,其总中位信噪比至少为五个。 IQNET的中位数为2.24%,训练类星体光谱为4.17%,测试类星体光谱。我们应用IQNET并预测$ \ sim $ 3200 SDSS-DR16 Quasar Spectra在更高的红移($ 2 <z \ leq 5 $)上,并测量LY-$ $ ly-lux flux($ <f> $)的红移演变。我们用红移来测量$ <f> $的逐渐演变,我们将其描述为适合Ly-$α$森林的有效光学深度的幂律。我们的测量值与文献中$ <f> $的其他估计值一致,但是提供了更准确的测量值,因为我们直接测量了从Ly-$α$ Forest中最小污染的类星体连续体。这项工作证明,深度学习IQNET模型可以高精度预测类星体连续体,并显示了这种方法对类星体连续预测的生存能力。
We present a novel intelligent quasar continuum neural network (iQNet), predicting the intrinsic continuum of any quasar in the rest-frame wavelength range 1020 Angstroms $\leq λ\leq$ 1600 Angstroms. We train this network using high-resolution Hubble Space Telescope/Cosmic Origin Spectrograph ultraviolet quasar spectra at low redshift ($z \sim 0.2$) from the Hubble Spectroscopic Legacy Archive, and apply it to predict quasar continua from different astronomical surveys. We utilize the HSLA quasar spectra that are well-defined in the rest-frame wavelength range [1020, 1600] Angstroms with an overall median signal-to-noise ratio of at least five. The iQNet achieves a median AFFE of 2.24% on the training quasar spectra, and 4.17% on the testing quasar spectra. We apply iQNet and predict the continua of $\sim$3200 SDSS-DR16 quasar spectra at higher redshift ($2< z \leq 5$) and measure the redshift evolution of mean transmitted flux ($< F >$) in the Ly-$α$ forest region. We measure a gradual evolution of $< F >$ with redshift, which we characterize as a power-law fit to the effective optical depth of the Ly-$α$ forest. Our measurements are broadly consistent with other estimates of $<F>$ in the literature, but provide a more accurate measurement as we are directly measuring the quasar continuum where there is minimum contamination from the Ly-$α$ forest. This work proves that the deep learning iQNet model can predict the quasar continuum with high accuracy and shows the viability of such methods for quasar continuum prediction.