论文标题

双线性希尔伯特(Hilbert

Bilinear Hilbert Transforms and (Sub)Bilinear Maximal Functions along Convex Curves

论文作者

Li, Junfeng, Yu, Haixia

论文摘要

在本文中,我们确定$ l^p(\ mathbb {r})\ times l^q(\ mathbb {r})\ rightarrow l^r(\ mathbb {r})$ the birinear hilbert hilbert transform transform $h_γ(f,g)沿CONVEX curve $γ$γ$γ$γ$γ$γ$γ$γ$γ$γ $h_γ(f,g)(x):= \ mathrm {p。\,v。} \ int _ { - \ infty}^{\ infty} f(x-t)g(x-γ(x-γ(t)) $ \ frac {1} {p}+\ frac {1} {q} = \ frac {1} {r} $和$ r> \ frac {1} {2} {2} $,$ p> 1 $和$ q> 1 $。此外,相同的$ l^p(\ mathbb {r})\ times l^q(\ mathbb {r})\ rightArrow l^r(\ Mathbb {r})$界属性具有相应的(sub)双线性功能的相应(sub)最大函数$m_γ(f,g)$m_γ$ $m_γ$ $ $m_γ( $M_γ(f,g)(x):= \ sup _ {\ varepsilon> 0} \ frac {1} {2 \ varepsilon} \ int \ int _ { - \ \ varepsilon}^{\ varepsilon}^{\ varepsilon} \,\ textrm {d}t。$$

In this paper, we determine the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_γ(f,g)$ along a convex curve $γ$ $$H_γ(f,g)(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-t)g(x-γ(t)) \,\frac{\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, and $r>\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_γ(f,g)$ along a convex curve $γ$ $$M_γ(f,g)(x):=\sup_{\varepsilon>0}\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}|f(x-t)g(x-γ(t))| \,\textrm{d}t.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源