论文标题

理想符合普遍限制的领域

Domains whose ideals meet a universal restriction

论文作者

Zafrullah, Muhammad

论文摘要

令$ s(d)$表示一组合适的非零理想$ i(d)$(resp。,$ t $ - ideals $ i_ {t}(d)$)的整体域$ d \ d \ neq qf(d)$,让$ p $是$ D的有效属性。 $ s \ in S(d)$包含在理想满足$ p $的理想之中。如果$ s(d)$ $ \ vartriangleleft p,则无法控制$ $ \ $ \ dim(d)$。当$ r = d [x],$ $ i(d)$ $ \ vartriangleleft p $并不意味着$ i(r)$ $ \ $ \ vartriangleleft p $ p $ p $,而$ i_ {t}(d)(d)$ \ $ \ \ vartriangleleft p $ inspie $ i_ i_ i_ {t}(r)$ $ $ $ \ vartriangleley forele forele forelelianglele forele for。我们说$ s(d)$会遇到$ p $,带有扭曲$($ s(d)\ vartriangleleft ^{t} p)$,如果每个$ s \ in s(d)$中的每个$ s \ in s(d)$是如此,对于某些$ n \ in n,$ $ $ $ s ^{n} $,则包含一个理想的满足$ p $ p $ and p $ s(d $ s(d $ s),前任。对上述方法的修改用于给出几乎Bezout域的概括。

Let $S(D)$ represent a set of proper nonzero ideals $I(D)$ (resp., $t$ -ideals $I_{t}(D)$) of an integral domain $D\neq qf(D)$ and let $P$ be a valid property of ideals of $D.$ We say $S(D)$ meets $P$ (denoted $ S(D)\vartriangleleft P)$ if each $s\in S(D)$ is contained in an ideal satisfying $P$. If $S(D)$ $\vartriangleleft P,$ $\dim (D)$ can't be controlled. When $R=D[X],$ $I(D)$ $\vartriangleleft P$ does not imply $I(R)$ $\vartriangleleft P$ while $I_{t}(D)$ $\vartriangleleft P$ implies $I_{t}(R)$ $\vartriangleleft P$ usually. We say $S(D)$ meets $P$ with a twist $($ written $S(D)\vartriangleleft ^{t}P)$ if each $s\in S(D)$ is such that, for some $n\in N,$ $s^{n}$ is contained in an ideal satisfying $P$ and study $ S(D)\vartriangleleft ^{t}P,$ as its predecessor. A modification of the above approach is used to give generalizations of Almost Bezout domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源