论文标题
每个基于动作的传感器
Every Action Based Sensor
论文作者
论文摘要
在研究机器人和计划问题时,一个基本问题是机器人必须获得的最小信息以保证任务完成。埃尔德曼(Erdmann)的基于动作的传感器理论是表征基本信息要求的经典方法。该方法使用计划来得出一种虚拟传感器的类型,该传感器规定了使目标进步的动作。我们表明,已建立的理论是不完整的:使用后排计划,获得此类传感器的先前方法,忽略了某些传感器。此外,有一些计划可以保证实现目标,而现有方法无法提供任何基于动作的传感器。我们确定所有此类计划共有的基本功能。然后,我们展示了如何为现有治疗不足的计划生成基于动作的传感器,尽管对于这些情况,它们没有单一的规范传感器。因此,该方法被推广以产生一组传感器。最后,我们还表明,这是针对计划问题的基于动作的传感器的完整表征,并讨论了基于动作的传感器如何转化为传统传感器的传统概念。
In studying robots and planning problems, a basic question is what is the minimal information a robot must obtain to guarantee task completion. Erdmann's theory of action-based sensors is a classical approach to characterizing fundamental information requirements. That approach uses a plan to derive a type of virtual sensor which prescribes actions that make progress toward a goal. We show that the established theory is incomplete: the previous method for obtaining such sensors, using backchained plans, overlooks some sensors. Furthermore, there are plans, that are guaranteed to achieve goals, where the existing methods are unable to provide any action-based sensor. We identify the underlying feature common to all such plans. Then, we show how to produce action-based sensors even for plans where the existing treatment is inadequate, although for these cases they have no single canonical sensor. Consequently, the approach is generalized to produce sets of sensors. Finally, we show also that this is a complete characterization of action-based sensors for planning problems and discuss how an action-based sensor translates into the traditional conception of a sensor.