论文标题

Abelian最小封闭的局部紧凑型第二组的闭合正常亚组的分类

A classification of the abelian minimal closed normal subgroups of locally compact second-countable groups

论文作者

Reid, Colin D.

论文摘要

我们将本地紧凑的第二计数(L.C.S.C.)组分类为Abelian且拓扑特征的$ A $。所有此类组$ a $作为某些可溶性L.C.S.C.的整体发生。 $ g $的派生长度最多$ 3 $;除了已知的例外(具体来说,当$ a $是$ \ mathbb {q}^n $或其对\ in \ mathbb {n} $的$ n \)的双重偶尔时,我们可以将$ g $紧凑地生成。这相当于对L.C.S.C. Abelian主要因素的同构类型的分类。组,这对于紧凑的局部紧凑型组的理论特别感兴趣。

We classify the locally compact second-countable (l.c.s.c.) groups $A$ that are abelian and topologically characteristically simple. All such groups $A$ occur as the monolith of some soluble l.c.s.c. group $G$ of derived length at most $3$; with known exceptions (specifically, when $A$ is $\mathbb{Q}^n$ or its dual for some $n \in \mathbb{N}$), we can take $G$ to be compactly generated. This amounts to a classification of the possible isomorphism types of abelian chief factors of l.c.s.c. groups, which is of particular interest for the theory of compactly generated locally compact groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源