论文标题

普遍的Turán问题的一些确切结果

Some exact results for generalized Turán problems

论文作者

Gerbner, Dániel, Palmer, Cory

论文摘要

修复$ K $ -Chronic Graph $ f $。在本文中,我们考虑一个问题要确定哪些图形$ h $turán图$ t_ {k-1}(n)$具有所有$ n $ n $ vertex $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ fre-f $ f $ f $ f $ f $ f $ f $ fre-free Graphs(对于$ n $,足够大)。我们说这样的图$ h $是$ f $-turán-good。除了一些一般结果外,我们还给出以下具体结果: (i)对于每个完整的多部分图$ h $,都有足够大的$ k $,以至于$ h $是$ k_k $-turán-good。 (ii)路径$ p_3 $是$ f $-turán-good for $ f $,$χ(f)\ geq 4 $。 (iii)路径$ p_4 $和循环$ c_4 $是$ c_5 $-turán-good。 (iv)周期$ C_4 $是$ f_2 $-turán-good,其中$ f_2 $是两个三角形共享一个完全共享一个顶点的图。

Fix a $k$-chromatic graph $F$. In this paper we consider the question to determine for which graphs $H$ does the Turán graph $T_{k-1}(n)$ have the maximum number of copies of $H$ among all $n$-vertex $F$-free graphs (for $n$ large enough). We say that such a graph $H$ is $F$-Turán-good. In addition to some general results, we give (among others) the following concrete results: (i) For every complete multipartite graph $H$, there is $k$ large enough such that $H$ is $K_k$-Turán-good. (ii) The path $P_3$ is $F$-Turán-good for $F$ with $χ(F) \geq 4$. (iii) The path $P_4$ and cycle $C_4$ are $C_5$-Turán-good. (iv) The cycle $C_4$ is $F_2$-Turán-good where $F_2$ is the graph of two triangles sharing exactly one vertex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源