论文标题

稀疏:稀疏RGBD图像的动态人化身建模

SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images

论文作者

Zuo, Xinxin, Wang, Sen, Zheng, Jiangbin, Yu, Weiwei, Gong, Minglun, Yang, Ruigang, Cheng, Li

论文摘要

在本文中,我们提出了一种新颖的方法,可以使用单个RGBD摄像机根据一组稀疏的RGBD帧重建3D人体形状。我们特别关注现实的环境,其中人类受试者在捕获过程中自由移动。主要的挑战是如何在姿势变化和表面遮挡下将这些稀疏的框架稳健融合到规范的3D模型中。这是由我们的新框架解决的,该框架包括以下步骤。首先,基于生成的人类模板,对于具有足够重叠的每两个帧,进行初始成对对准;其次是全球非刚性注册程序,在成对对准的对​​应关系的指导下,将RGBD帧的部分结果收集到统一的3D形状;最后,对重建的人类模型的纹理图进行了优化,以提供清晰且空间一致的纹理。对合成和真实数据集的经验评估在定量和定性上都表明了我们框架在重建具有高忠诚度完整的3D人类模型时的出色表现。值得注意的是,我们的框架是灵活的,潜在的应用超出了形状重建。例如,我们展示了它在重塑和重新安息中的用途。

In this paper, we propose a novel approach to reconstruct 3D human body shapes based on a sparse set of RGBD frames using a single RGBD camera. We specifically focus on the realistic settings where human subjects move freely during the capture. The main challenge is how to robustly fuse these sparse frames into a canonical 3D model, under pose changes and surface occlusions. This is addressed by our new framework consisting of the following steps. First, based on a generative human template, for every two frames having sufficient overlap, an initial pairwise alignment is performed; It is followed by a global non-rigid registration procedure, in which partial results from RGBD frames are collected into a unified 3D shape, under the guidance of correspondences from the pairwise alignment; Finally, the texture map of the reconstructed human model is optimized to deliver a clear and spatially consistent texture. Empirical evaluations on synthetic and real datasets demonstrate both quantitatively and qualitatively the superior performance of our framework in reconstructing complete 3D human models with high fidelity. It is worth noting that our framework is flexible, with potential applications going beyond shape reconstruction. As an example, we showcase its use in reshaping and reposing to a new avatar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源