论文标题
使用可解释的机器学习方法研究国际移民的驱动力
Using an interpretable Machine Learning approach to study the drivers of International Migration
论文作者
论文摘要
全球增加的移民压力要求采用新的建模方法来设计有效的政策。重要的是,不仅拥有有效的模型来预测迁移流,而且要了解特定参数如何影响这些流。在本文中,我们提出一个人工神经网络(ANN)来建模国际移民。此外,我们使用一种技术来解释机器学习模型,即部分依赖图(PDP),以表明人们可以很好地研究国际移民背后的驾驶员的影响。我们在包含年度国际双边迁移的数据集中培训和评估该模型,从$ 1960 $到$ 175 $的$ 175 $原始国家到$ 33 $,主要是经合组织目的地,以及迁移文献中确定的主要决定因素。进行的实验证实:1)ANN模型更有效W.R.T.传统模型,以及2)使用PDP,我们能够对迁移驱动程序的特定影响获得更多见解。这种方法提供的信息比仅使用以前工作中使用的功能重要性信息更多的信息。
Globally increasing migration pressures call for new modelling approaches in order to design effective policies. It is important to have not only efficient models to predict migration flows but also to understand how specific parameters influence these flows. In this paper, we propose an artificial neural network (ANN) to model international migration. Moreover, we use a technique for interpreting machine learning models, namely Partial Dependence Plots (PDP), to show that one can well study the effects of drivers behind international migration. We train and evaluate the model on a dataset containing annual international bilateral migration from $1960$ to $2010$ from $175$ origin countries to $33$ mainly OECD destinations, along with the main determinants as identified in the migration literature. The experiments carried out confirm that: 1) the ANN model is more efficient w.r.t. a traditional model, and 2) using PDP we are able to gain additional insights on the specific effects of the migration drivers. This approach provides much more information than only using the feature importance information used in previous works.