论文标题

扩展XACC以进行量子最佳控制

Extending XACC for Quantum Optimal Control

论文作者

Nguyen, Thien, Santana, Anthony, McCaskey, Alexander

论文摘要

量子计算供应商开始为直接脉冲级量子控制打开应用程序编程界面。这样,程序员可以通过任意脉冲形状序列开始描述执行的量子内核。这为智能量子汇编例程开辟了新的研发途径,该汇编程序可以将高级数字组装表示形式直接转换为这些本机脉冲指令。在这项工作中,我们向XACC系统级量子量子软件框架提供了扩展,该框架可以通过用户指定的量子最佳控制技术直接启用此汇编降低阶段。该扩展可以使数字量子电路表示形式转换为相对于后端系统动力学最佳的等效脉冲序列。我们的工作是模块化的,可扩展的,可以在C ++和Python中采用第三方最佳控制技术和策略。我们通过熟悉的基于梯度的方法(例如梯度上升脉冲工程(葡萄),分析控制(山羊)和Krotov的方法等梯度脉冲工程(葡萄)和方法,我们证明了这一扩展。我们的工作是未来量子古典编译器设计的基础组成部分,这些设计将高级程序化表示形式降低到低级机器说明。

Quantum computing vendors are beginning to open up application programming interfaces for direct pulse-level quantum control. With this, programmers can begin to describe quantum kernels of execution via sequences of arbitrary pulse shapes. This opens new avenues of research and development with regards to smart quantum compilation routines that enable direct translation of higher-level digital assembly representations to these native pulse instructions. In this work, we present an extension to the XACC system-level quantum-classical software framework that directly enables this compilation lowering phase via user-specified quantum optimal control techniques. This extension enables the translation of digital quantum circuit representations to equivalent pulse sequences that are optimal with respect to the backend system dynamics. Our work is modular and extensible, enabling third party optimal control techniques and strategies in both C++ and Python. We demonstrate this extension with familiar gradient-based methods like gradient ascent pulse engineering (GRAPE), gradient optimization of analytic controls (GOAT), and Krotov's method. Our work serves as a foundational component of future quantum-classical compiler designs that lower high-level programmatic representations to low-level machine instructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源