论文标题
彗星:小型对象跟踪的上下文感知的IOU指导网络
COMET: Context-Aware IoU-Guided Network for Small Object Tracking
论文作者
论文摘要
我们考虑了跟踪从中等高度的空中视频的未知小目标的问题。这是一个具有挑战性的问题,在不可避免的摄像机运动和高密度的情况下,它更加明显。为了解决此问题,我们引入了一个上下文感知的IOU指导跟踪器(COMET),该跟踪器(COMET)利用多任务两屏网络和离线参考提案生成策略。提出的网络通过多尺度功能学习和注意力模块充分利用与目标相关的信息。提出的策略引入了一种有效的抽样策略,可以将网络概括到目标及其部分上,而在线跟踪期间不施加额外的计算复杂性。这些策略在处理重大遮挡和观点变化方面做出了巨大贡献。从经验上讲,彗星在集中于跟踪小物体的一系列空中视图数据集中优于最先进的。具体而言,Comet在挑战性的UAVDT,Visdrone-2019和Small-90上的精确度(和成功)得分的平均优于著名的原子跟踪器的平均差距为6.2%(和成功)。
We consider the problem of tracking an unknown small target from aerial videos of medium to high altitudes. This is a challenging problem, which is even more pronounced in unavoidable scenarios of drastic camera motion and high density. To address this problem, we introduce a context-aware IoU-guided tracker (COMET) that exploits a multitask two-stream network and an offline reference proposal generation strategy. The proposed network fully exploits target-related information by multi-scale feature learning and attention modules. The proposed strategy introduces an efficient sampling strategy to generalize the network on the target and its parts without imposing extra computational complexity during online tracking. These strategies contribute considerably in handling significant occlusions and viewpoint changes. Empirically, COMET outperforms the state-of-the-arts in a range of aerial view datasets that focusing on tracking small objects. Specifically, COMET outperforms the celebrated ATOM tracker by an average margin of 6.2% (and 7%) in precision (and success) score on challenging benchmarks of UAVDT, VisDrone-2019, and Small-90.