论文标题

一个用于隐私机器学习的分布式信任框架

A Distributed Trust Framework for Privacy-Preserving Machine Learning

论文作者

Abramson, Will, Hall, Adam James, Papadopoulos, Pavlos, Pitropakis, Nikolaos, Buchanan, William J

论文摘要

训练机器学习模型时,研究人员对数据和模型都有充分了解是标准程序。但是,这会导致数据所有者和数据科学家之间缺乏信任。数据所有者有理由不愿意将私人信息控制给第三方。隐私保护技术分发计算,以确保在学习时数据保留在所有者的控制中。但是,分布在多个代理之间的体系结构引入了一套全新的安全性和信任并发症。这些包括数据中毒和模型盗窃。本文概述了分布式基础架构,该基础架构用于促进分布式代理之间的点对点信任;协作执行隐私保护工作流程。我们概述的原型将行业守门人和治理机构作为证书发行人。在参加分布式学习工作流程之前,恶意演员必须首先协商有效的证书。我们详细介绍了使用Hyperledger白羊座,分散的标识符(DIDS)和可验证的凭据(VC)的概念证明,以在隐私的机器学习实验中建立分布式信任体系结构。具体而言,我们利用安全和身份验证的沟通渠道,以促进与心理保健数据相关的联合学习工作流程。

When training a machine learning model, it is standard procedure for the researcher to have full knowledge of both the data and model. However, this engenders a lack of trust between data owners and data scientists. Data owners are justifiably reluctant to relinquish control of private information to third parties. Privacy-preserving techniques distribute computation in order to ensure that data remains in the control of the owner while learning takes place. However, architectures distributed amongst multiple agents introduce an entirely new set of security and trust complications. These include data poisoning and model theft. This paper outlines a distributed infrastructure which is used to facilitate peer-to-peer trust between distributed agents; collaboratively performing a privacy-preserving workflow. Our outlined prototype sets industry gatekeepers and governance bodies as credential issuers. Before participating in the distributed learning workflow, malicious actors must first negotiate valid credentials. We detail a proof of concept using Hyperledger Aries, Decentralised Identifiers (DIDs) and Verifiable Credentials (VCs) to establish a distributed trust architecture during a privacy-preserving machine learning experiment. Specifically, we utilise secure and authenticated DID communication channels in order to facilitate a federated learning workflow related to mental health care data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源