论文标题
在高循环订单的Regge限制中的两部分散射幅度
Two-parton scattering amplitudes in the Regge limit to high loop orders
论文作者
论文摘要
我们通过迭代求解BFKL方程,研究了在扰动QCD的高能极限中进行两到二的散射幅度。这使我们能够预测任意$ t $ channel颜色交换的领先阶段顺序的振幅的虚构部分。我们计算的校正对应于梯形图,并在两个重新胶圈之间形成任意数量的梯级。我们的方法利用了直接在柔软区域和通用区域之间的动量空间中执行的两种型波功能的分离。波函数的前一个组成部分导致振幅中的红外差异,因此在尺寸正则化中计算出来。后者直接在两个横向尺寸中计算出来,并用均匀重量的单值谐波多载体表示。通过将两者结合起来,我们可以准确确定对扰动理论中两到两个散射幅度逐阶的红外发散和有限贡献。我们以数值为单位研究结果为13个回路,发现对振幅的有限校正具有有限的收敛半径,这取决于$ t $ - 通道交换的颜色表示。
We study two-to-two parton scattering amplitudes in the high-energy limit of perturbative QCD by iteratively solving the BFKL equation. This allows us to predict the imaginary part of the amplitude to leading-logarithmic order for arbitrary $t$-channel colour exchange. The corrections we compute correspond to ladder diagrams with any number of rungs formed between two Reggeized gluons. Our approach exploits a separation of the two-Reggeon wavefunction, performed directly in momentum space, between a soft region and a generic (hard) region. The former component of the wavefunction leads to infrared divergences in the amplitude and is therefore computed in dimensional regularization; the latter is computed directly in two transverse dimensions and is expressed in terms of single-valued harmonic polylogarithms of uniform weight. By combining the two we determine exactly both infrared-divergent and finite contributions to the two-to-two scattering amplitude order-by-order in perturbation theory. We study the result numerically to 13 loops and find that finite corrections to the amplitude have a finite radius of convergence which depends on the colour representation of the $t$-channel exchange.