论文标题

封闭流体二极管中的临界压力不对称性

Critical pressure asymmetry in the enclosed fluid diode

论文作者

Panter, Jack R., Gizaw, Yonas, Kusumaatmaja, Halim

论文摘要

关节在物理和化学构图的表面可以提供有效的,被动的流体流动。许多这些表面仅允许单向流动的能力意味着它们通常被称为流体二极管。这些类似物的合成类似物是从雾收集到可持续水收集到改善伤口敷料的能力。一个钥匙流体二极管几何形状具有夹在两个吸收性底物之间的孔,这是一种需要液体捕获的应用,同时防止后流。但是,由于需要低拉普拉斯压力进入孔隙的液体以及高液体压力,因此封闭的孔设计为有效的流体二极管特别具有挑战性。在这里,我们计算了在带有化学梯度的一系列圆锥孔设计上在两个方向上行进的流体的拉普拉压力。我们表明,通常需要这种化学梯度才能达到传入和传出液体之间最大的临界压力差异。最后,我们讨论了最大化这种临界压力不对称性的优化策略。

Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow mean they are often referred to as fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting, to improved wound dressings. One key fluid diode geometry features a pore sandwiched between two absorbent substrates, an important design for applications which require liquid capture while preventing back-flow. However, the enclosed pore is particularly challenging to design as an effective fluid diode, due to the need for both a low Laplace pressure for liquid entering the pore, and a high Laplace pressure to liquid leaving. Here, we calculate the Laplace pressure for fluid travelling in both directions on a range of conical pore designs with a chemical gradient. We show that this chemical gradient is in general required to achieve the largest critical pressure differences between incoming and outgoing liquids. Finally, we discuss the optimisation strategy to maximise this critical pressure asymmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源