论文标题
用于放射生物学应用的激光杂交加速器
The Laser-hybrid Accelerator for Radiobiological Applications
论文作者
论文摘要
Lhara的“放射生物学应用的激光杂交加速器”被认为是一种专门用于放射生物学研究的新颖,独特的设施。在Lhara中证明的具有广泛应用的技术将允许在全新的状态下进行粒子束治疗,并将各种离子物种组合在单个治疗部分中并利用超高剂量率。 Lhara将是一种混合加速器系统,在该系统中,激光相互作用驱动了使用血浆(Gabor)透镜捕获并形成光束中的质子或光离子的大量通量。激光驱动的源允许质子和离子在能量上显着捕获高于传统设施中的质子和离子,从而避免了可以传递的瞬时剂量速率的当前空间充电限制。因此,激光杂交方法将允许放射性生物学的巨大``terra terra rongognita''确定组织对质子和光离子的电离辐射的响应,并使用各种时间结构,光谱分布,以及在瞬时的剂量上均高于flash flash flash flash flash flash offer flash'dose'shige'' 提议在两个阶段开发Lhara。在第一阶段,体外放射生物学程序将与质子束一起使用,其能量在10mev和15mev之间。在第二阶段,将使用固定场加速器(FFA)加速梁。这将允许在体外和体内进行实验,质子束能量高达127mev。此外,将用于体外和体内实验的能量高达33.4mev的离子束。本文介绍了Lhara和R&D计划的概念设计,该计划通过该计划寻求建立该设施。
The `Laser-hybrid Accelerator for Radiobiological Applications', LhARA, is conceived as a novel, uniquely-flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to allow particle-beam therapy to be delivered in a completely new regime, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid approach, therefore, will allow the vast ``terra incognita'' of the radiobiology that determines the response of tissue to ionising radiation to be studied with protons and light ions using a wide variety of time structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the ultra-high dose-rate `FLASH' regime. It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology will be served with proton beams with energies between 10MeV and 15MeV. In stage two, the beam will be accelerated using a fixed-field accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo with proton beam energies of up to 127MeV. In addition, ion beams with energies up to 33.4MeV per nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility.