论文标题

稀疏网络优化用于同步

Sparse Network Optimization for Synchronization

论文作者

Burachik, Regina S., Kalloniatis, Alexander C., Kaya, C. Yalçın

论文摘要

我们提出了可以实现同步的稀疏动力学图或网络的新数学优化模型。使用Kuramoto模型研究了同步现象,该模型根据图的邻接矩阵和网络的耦合强度定义,对所谓的耦合振荡器进行了建模。除稀疏性外,我们的目标是获得具有良好连通性能的图,从而导致同步的耦合强度较小。为此,我们制定了三个数学优化模型。我们的第一个模型是一个混合整数优化问题,受ODE限制,让人联想到最佳控制问题。正如预期的那样,该问题在计算上是非常具有挑战性的,即使不是不可能的,不仅是因为它涉及二进制变量,而且其某些变量是函数。第二个模型是对第一个模型的连续放松,第三个模型是第二个模型的离散化,通过使用标准优化软件可以在计算上进行计算。我们通过解决放松的问题并将实用算法应用于各种图形大小,并具有随机生成的固有固有频率和初始相变量,从而设计了同步的动态图。我们通过使用随机数据进行数值模拟并在此随机数据下构建网络顺序参数及其方差的预期值来测试这些图的鲁棒性,作为评估指南。

We propose new mathematical optimization models for generating sparse dynamical graphs, or networks, that can achieve synchronization. The synchronization phenomenon is studied using the Kuramoto model, defined in terms of the adjacency matrix of the graph and the coupling strength of the network, modelling the so-called coupled oscillators. Besides sparsity, we aim to obtain graphs which have good connectivity properties, resulting in small coupling strength for synchronization. We formulate three mathematical optimization models for this purpose. Our first model is a mixed integer optimization problem, subject to ODE constraints, reminiscent of an optimal control problem. As expected, this problem is computationally very challenging, if not impossible, to solve, not only because it involves binary variables but also some of its variables are functions. The second model is a continuous relaxation of the first one, and the third is a discretization of the second, which is computationally tractable by employing standard optimization software. We design dynamical graphs that synchronize, by solving the relaxed problem and applying a practical algorithm for various graph sizes, with randomly generated intrinsic natural frequencies and initial phase variables. We test robustness of these graphs by carrying out numerical simulations with random data and constructing the expected value of the network's order parameter and its variance under this random data, as a guide for assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源