论文标题

机器人操纵器的距离距离的随机建模

Stochastic Modeling of Distance to Collision for Robot Manipulators

论文作者

Das, Nikhil, Yip, Michael C.

论文摘要

评估机器人操纵器的距离距离可用于评估机器人配置的可行性或在无法预测的环境中定义安全机器人运动的可行性。但是,距离估计是时间耗尽的操作,测量距离涉及的传感器总是嘈杂的。因此,在评估更安全的机器人控制和计划的碰撞的预期距离时,存在一个挑战。在这项工作中,我们建议使用高斯过程(GP)回归和正向运动学(FK)内核(机器人操纵器的相似性函数)来有效,准确地估计与碰撞的距离。我们表明,与标准几何技术相比,具有FK内核的GP模型的距离评估速度快70倍,并且与其他回归模型相比,与其他回归模型相比,精确评估的距离要高出13倍,即使GP接受了噪声距离测量的训练。我们在轨迹优化任务中采用了这一技术,并且比无噪声几何方法比获得相似的优化运动计划要快9倍。我们还提出了一个基于置信的混合模型,该模型在高置信区域中使用基于模型的预测,并切换到其他领域的基于更昂贵的传感器方法,我们在涉及到达狭窄段落的应用中演示了该混合模型的实用性。

Evaluating distance to collision for robot manipulators is useful for assessing the feasibility of a robot configuration or for defining safe robot motion in unpredictable environments. However, distance estimation is a timeconsuming operation, and the sensors involved in measuring the distance are always noisy. A challenge thus exists in evaluating the expected distance to collision for safer robot control and planning. In this work, we propose the use of Gaussian process (GP) regression and the forward kinematics (FK) kernel (a similarity function for robot manipulators) to efficiently and accurately estimate distance to collision. We show that the GP model with the FK kernel achieves 70 times faster distance evaluations compared to a standard geometric technique, and up to 13 times more accurate evaluations compared to other regression models, even when the GP is trained on noisy distance measurements. We employ this technique in trajectory optimization tasks and observe 9 times faster optimization than with the noise-free geometric approach yet obtain similar optimized motion plans. We also propose a confidence-based hybrid model that uses model-based predictions in regions of high confidence and switches to a more expensive sensor-based approach in other areas, and we demonstrate the usefulness of this hybrid model in an application involving reaching into a narrow passage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源