论文标题

从威斯基到波旁威斯康:对数结构合并树的学习索引

From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees

论文作者

Dai, Yifan, Xu, Yien, Ganesan, Aishwarya, Alagappan, Ramnatthan, Kroth, Brian, Arpaci-Dusseau, Andrea C., Arpaci-Dusseau, Remzi H.

论文摘要

我们介绍了Bourbon,这是一种日志结构合并(LSM)树,它利用机器学习来提供快速查找。我们将波旁威士忌的设计和实施基于经验基本原则,通过对LSM设计的仔细分析得出。波旁威士忌采用贪婪的分段线性回归来学习关键分布,以最少的计算来快速查找,并采用成本效益策略来决定何时学习何时值得。通过一系列关于合成数据集和现实世界数据集的实验,我们表明,与最先进的生产LSM相比,波旁威士忌将查找性能提高了1.23x-1.78倍。

We introduce BOURBON, a log-structured merge (LSM) tree that utilizes machine learning to provide fast lookups. We base the design and implementation of BOURBON on empirically-grounded principles that we derive through careful analysis of LSM design. BOURBON employs greedy piecewise linear regression to learn key distributions, enabling fast lookup with minimal computation, and applies a cost-benefit strategy to decide when learning will be worthwhile. Through a series of experiments on both synthetic and real-world datasets, we show that BOURBON improves lookup performance by 1.23x-1.78x as compared to state-of-the-art production LSMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源