论文标题

在ZF集理论中添加抽象障碍

Adding an Abstraction Barrier to ZF Set Theory

论文作者

Dunne, Ciarán, Wells, J. B., Kamareddine, Fairouz

论文摘要

许多数学写作存在,它是基于集合理论明确或隐式的,通常是zermelo-fraenkel集理论(ZF)或其变体之一。在ZF中,话语领域仅包含集合,因此每个数学对象都必须是集合。因此,在ZF中,使用有序对$ {\ langle a,b \ rangle} $的通常编码,如$ {\ {\ {a \} \ in \ langle a,b \ rangle} $之类的公式,如$ {\ mathcal p(\ natercal p(\ langcal p),\ langle a \ langle a and as b \ lange a y b \ lange and b \ lange。这种“偶然定理”与人们对数学的看法不符,并且在使用机器辅助定理中使用设置理论时也会造成实际困难。相反,在许多证明助手中,数学对象和概念可以由类型理论的东西构建,因此从本质上讲,许多数学对象可以是扩展的键入$λ$ -calculus的术语。但是,在类型理论中形式化数学时会出现困境和挫败感。 由(1)纯粹的设定理论和(2)类型理论方法形式化数学的问题,我们探索了一个选项,具有集合理论的大部分灵活性以及类型理论的一些有用特征。我们提出ZFP:对ZF的修改,该ZF将对订购为原始的非设定对象。 ZFP对有序对具有更自然和抽象的公理定义,没有任何表示的概念。本文介绍了ZFP的公理,并在ZF中(在Isabelle/ZF中检查)证明了ZFP模型的存在,这意味着如果ZF为ZF,则ZFP是一致的。我们讨论用于将这种抽象障碍添加到ZF的方法。

Much mathematical writing exists that is, explicitly or implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or one of its variants. In ZF, the domain of discourse contains only sets, and hence every mathematical object must be a set. Consequently, in ZF, with the usual encoding of an ordered pair ${\langle a, b\rangle}$, formulas like ${\{a\} \in \langle a, b \rangle}$ have truth values, and operations like ${\mathcal P (\langle a, b\rangle)}$ have results that are sets. Such 'accidental theorems' do not match how people think about the mathematics and also cause practical difficulties when using set theory in machine-assisted theorem proving. In contrast, in a number of proof assistants, mathematical objects and concepts can be built of type-theoretic stuff so that many mathematical objects can be, in essence, terms of an extended typed $λ$-calculus. However, dilemmas and frustration arise when formalizing mathematics in type theory. Motivated by problems of formalizing mathematics with (1) purely set-theoretic and (2) type-theoretic approaches, we explore an option with much of the flexibility of set theory and some of the useful features of type theory. We present ZFP: a modification of ZF that has ordered pairs as primitive, non-set objects. ZFP has a more natural and abstract axiomatic definition of ordered pairs free of any notion of representation. This paper presents axioms for ZFP, and a proof in ZF (machine-checked in Isabelle/ZF) of the existence of a model for ZFP, which implies that ZFP is consistent if ZF is. We discuss the approach used to add this abstraction barrier to ZF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源