论文标题

机器人辅助物联网应用程序的反向散射本地化

Robot-assisted Backscatter Localization for IoT Applications

论文作者

Zhang, Shengkai, Wang, Wei, Tang, Sheyang, Jin, Shi, Jiang, Tao

论文摘要

近年来,反向散射技术的迅速扩散,这些技术实现了与智能城市和智能家居的无处不在和长期连通性。本地化此类反向散射标签对于基于物联网的智能应用程序至关重要。但是,当前的反向散射本地化系统需要对该站点的先验知识,即具有已知位置的地图或地标,这很费力地部署。为了赋予通用本地化服务能力,本文介绍了Rover,Rover是一种室内定位系统,它可以使用配备惯性传感器的机器人来定位多个反向散射标签,而无需任何启动成本。 Rover在关节优化框架中运行,从反向散射的WiFi信号和惯性传感器进行融合,以同时估算机器人和连接的标签的位置。我们的设计解决了实际问题,包括多个标签之间的干扰,实时处理以及处理退化动作时的数据边缘化问题。我们使用现成的WiFi芯片和自定义的反向散射标签原型Rover。我们的实验表明,Rover为机器人达到39.3 cm的定位精度,标签的定位精度为74.6 cm。

Recent years have witnessed the rapid proliferation of backscatter technologies that realize the ubiquitous and long-term connectivity to empower smart cities and smart homes. Localizing such backscatter tags is crucial for IoT-based smart applications. However, current backscatter localization systems require prior knowledge of the site, either a map or landmarks with known positions, which is laborious for deployment. To empower universal localization service, this paper presents Rover, an indoor localization system that localizes multiple backscatter tags without any start-up cost using a robot equipped with inertial sensors. Rover runs in a joint optimization framework, fusing measurements from backscattered WiFi signals and inertial sensors to simultaneously estimate the locations of both the robot and the connected tags. Our design addresses practical issues including interference among multiple tags, real-time processing, as well as the data marginalization problem in dealing with degenerated motions. We prototype Rover using off-the-shelf WiFi chips and customized backscatter tags. Our experiments show that Rover achieves localization accuracies of 39.3 cm for the robot and 74.6 cm for the tags.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源