论文标题
逻辑形式最小化
Minimisation in Logical Form
论文作者
论文摘要
石型二元性为研究逻辑系统的特性提供了强大的数学框架。最近,他们在了解各种类型的自动机的最小化方面进行了良好的探索。在Bezhanishvili等人中。 (2012年),一类类别的山地与代数类别之间的双重等效性用于解释最小化。代数语义对于岩性语义是双重的,在该语义上,逻辑等效性与痕量等效相吻合。因此,结膜的最大商对应于代数的最小亚物体。示例包括部分可观察到的确定性有限自动机,线性加权自动机被有限维矢量空间视为山地,以及信念自动机,它们是紧凑型Hausdorff空间上的山地。在Bonchi等。 (2014年),Brzozozowski对确定性有限自动机的双重反转最小化算法进行了分类描述,其正确性通过可及性和可观察性之间的二元性来解释。这项工作包括Brzozowski的算法对摩尔的概括,并在交换性半段上加权自动机。 在本文中,我们提出了一个一般的分类框架,可以理解这种最小化算法。目标是基于二元性提供统一的观点。我们的框架由三个相互连接的套件组成:一个可以将基本双重辅助功能抬高到山地和代数之间的双重辅助以及自动机之间的双重辅助。该方法提供了对可及性和可观察性的抽象理解。我们说明了一系列具体示例的一般框架,包括确定性的Kripke框架,加权自动机,拓扑自动机(信念自动机)和交替的自动机。
Stone-type dualities provide a powerful mathematical framework for studying properties of logical systems. They have recently been fruitfully explored in understanding minimisation of various types of automata. In Bezhanishvili et al. (2012), a dual equivalence between a category of coalgebras and a category of algebras was used to explain minimisation. The algebraic semantics is dual to a coalgebraic semantics in which logical equivalence coincides with trace equivalence. It follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras. Examples include partially observable deterministic finite automata, linear weighted automata viewed as coalgebras over finite-dimensional vector spaces, and belief automata, which are coalgebras on compact Hausdorff spaces. In Bonchi et al. (2014), Brzozowski's double-reversal minimisation algorithm for deterministic finite automata was described categorically and its correctness explained via the duality between reachability and observability. This work includes generalisations of Brzozowski's algorithm to Moore and weighted automata over commutative semirings. In this paper we propose a general categorical framework within which such minimisation algorithms can be understood. The goal is to provide a unifying perspective based on duality. Our framework consists of a stack of three interconnected adjunctions: a base dual adjunction that can be lifted to a dual adjunction between coalgebras and algebras and also to a dual adjunction between automata. The approach provides an abstract understanding of reachability and observability. We illustrate the general framework on range of concrete examples, including deterministic Kripke frames, weighted automata, topological automata (belief automata), and alternating automata.