论文标题

实例感知图像着色

Instance-aware Image Colorization

论文作者

Su, Jheng-Wei, Chu, Hung-Kuo, Huang, Jia-Bin

论文摘要

图像着色本质上是多模式不确定性的不良问题。以前的方法利用深神网络将输入灰度图像映射到合理的颜色输出。尽管这些基于学习的方法表现出了令人印象深刻的性能,但它们通常在包含多个对象的输入图像上失败。主要原因是现有模型在整个图像上执行学习和着色。在没有明确的图形分离的情况下,这些模型无法有效地定位并学习有意义的对象级语义。在本文中,我们提出了一种实现实例感知着色的方法。我们的网络体系结构利用现成的对象检测器获得裁剪的对象图像,并使用实例着色网络来提取对象级特征。我们使用类似的网络来提取全图像功能,并将融合模块应用于完整的对象级别和图像级特征以预测最终颜色。从大规模数据集中学到了着色网络和融合模块。实验结果表明,我们的工作表现优于不同质量指标的现有方法,并在图像着色上实现了最先进的性能。

Image colorization is inherently an ill-posed problem with multi-modal uncertainty. Previous methods leverage the deep neural network to map input grayscale images to plausible color outputs directly. Although these learning-based methods have shown impressive performance, they usually fail on the input images that contain multiple objects. The leading cause is that existing models perform learning and colorization on the entire image. In the absence of a clear figure-ground separation, these models cannot effectively locate and learn meaningful object-level semantics. In this paper, we propose a method for achieving instance-aware colorization. Our network architecture leverages an off-the-shelf object detector to obtain cropped object images and uses an instance colorization network to extract object-level features. We use a similar network to extract the full-image features and apply a fusion module to full object-level and image-level features to predict the final colors. Both colorization networks and fusion modules are learned from a large-scale dataset. Experimental results show that our work outperforms existing methods on different quality metrics and achieves state-of-the-art performance on image colorization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源