论文标题
从学习许多人的步态签名到重建一个个体的步态动力学
From learning gait signatures of many individuals to reconstructing gait dynamics of one single individual
论文作者
论文摘要
基于相同的数据库,我们通过计算数据驱动的算法来计算两个看似高度相关的问题,实际上是截然不同的问题:1)如何精确地完成区分许多人的步态特征的重要任务? 2)如何完全重建个人的复杂步态动力学?我们的大脑可以“毫不费力”解决第一个问题,但肯定会在第二个问题中失败。由于许多精细的时间尺度步态模式肯定会逃脱我们的眼睛。基于加速度计的3D步态时间序列数据库,我们通过在肌肉骨骼系统的步态动力学内通过多尺度结构依赖性将答案与两个问题联系起来。探索了两种类型的依赖性表现。我们首先开发简单的算法计算,称为“原理系统状态分析”(PSSA),以隐式形式的粗糙依赖性。 PSSA被证明能够在许多受试者中有效分类。然后,我们开发多尺度的locas-1st-lobal-2nd(L1G2)编码算法和地标计算算法。使用两种算法,我们可以精确地剖析节奏步态循环,然后将每个循环分解为一系列环状步态相。通过适当的颜色编码和堆叠,我们通过3D圆柱重建并代表个人的步态动力学,以在所有节奏周期中共同揭示百分(10毫秒)尺度上的普遍确定性和随机结构模式。该3D圆柱体可以用作“ Passtensor”,用于与临床诊断和网络安全有关的身份验证目的。
Based on the same databases, we computationally address two seemingly highly related, in fact drastically distinct, questions via computational data-driven algorithms: 1) how to precisely achieve the big task of differentiating gait signatures of many individuals? 2) how to reconstruct an individual's complex gait dynamics in full? Our brains can "effortlessly" resolve the first question, but will definitely fail in the second one. Since many fine temporal scale gait patterns surely escape our eyes. Based on accelerometers' 3D gait time series databases, we link the answers toward both questions via multiscale structural dependency within gait dynamics of our musculoskeletal system. Two types of dependency manifestations are explored. We first develop simple algorithmic computing called Principle System-State Analysis (PSSA) for the coarse dependency in implicit forms. PSSA is shown to be able to efficiently classifying among many subjects. We then develop a multiscale Local-1st-Global-2nd (L1G2) Coding Algorithm and a landmark computing algorithm. With both algorithms, we can precisely dissect rhythmic gait cycles, and then decompose each cycle into a series of cyclic gait phases. With proper color-coding and stacking, we reconstruct and represent an individual's gait dynamics via a 3D cylinder to collectively reveal universal deterministic and stochastic structural patterns on centisecond (10 milliseconds) scale across all rhythmic cycles. This 3D cylinder can serve as "passtensor" for authentication purposes related to clinical diagnoses and cybersecurity.