论文标题
在有限符核基团的(2,3)中
On the (2,3)-generation of the finite symplectic groups
论文作者
论文摘要
本文是朝着有限简单组的完整分类的新重要一步,即$(2,3)$ - 生成。实际上,我们证明了sympletic组$ sp_ {2n}(q)$是$(2,3)$ - 为所有$ n \ geq 4 $生成。由于存在现有文献,因此此结果意味着$ psp_ {2n}(q)$是$(2,3)$ - 生成了所有$ n \ geq 2 $,除$ psp_4(2^f)$和$ psp_4(3^f)$外。
This paper is a new important step towards the complete classification of the finite simple groups which are $(2, 3)$-generated. In fact, we prove that the symplectic groups $Sp_{2n}(q)$ are $(2,3)$-generated for all $n\geq 4$. Because of the existing literature, this result implies that the groups $PSp_{2n}(q)$ are $(2,3)$-generated for all $n\geq 2$, with the exception of $PSp_4(2^f)$ and $PSp_4(3^f)$.