论文标题

湍流燃烧闭合中PDF制表的有效的机器学习方法

An Efficient Machine-Learning Approach for PDF Tabulation in Turbulent Combustion Closure

论文作者

Ranade, Rishikesh, Li, Genong, Li, Shaoping, Echekki, Tarek

论文摘要

基于概率密度函数(PDF)的湍流燃烧建模受到存储可以占用大量内存的多维PDF表的限制。通过使用代表使用数学函数的PDF表的热化学数量的各种机器学习技术,可以实现大量的存储。这些功能在计算上可能比用于热化学量的现有插值方法更昂贵。更重要的是,训练时间可以相当于模拟时间的相当一部分。在这项工作中,我们通过引入一种自适应培训算法来解决这些问题,该算法依赖于多层感知(MLP)神经网络来进行回归和自组织图(SOMS),以便使用不同的网络来制作集群数据。该算法旨在解决PDF表的多维性以及所提出算法的计算效率。 SOM聚类根据数据的相似性将PDF表分为几个部分。每个数据群都使用简单网络体系结构上的MLP算法训练,以生成用于热化学量的局部功能。使用RANS和LES模拟对所谓的DLR-A湍流射流扩散火焰进行了验证,将PDF制表的结果与标准线性插值方法进行了比较。该比较在两种制表技术之间产生了非常好的一致性,并将MLP-SOM方法作为PDF制表的可行方法。

Probability density function (PDF) based turbulent combustion modelling is limited by the need to store multi-dimensional PDF tables that can take up large amounts of memory. A significant saving in storage can be achieved by using various machine-learning techniques that represent the thermo-chemical quantities of a PDF table using mathematical functions. These functions can be computationally more expensive than the existing interpolation methods used for thermo-chemical quantities. More importantly, the training time can amount to a considerable portion of the simulation time. In this work, we address these issues by introducing an adaptive training algorithm that relies on multi-layer perception (MLP) neural networks for regression and self-organizing maps (SOMs) for clustering data to tabulate using different networks. The algorithm is designed to address both the multi-dimensionality of the PDF table as well as the computational efficiency of the proposed algorithm. SOM clustering divides the PDF table into several parts based on similarities in data. Each cluster of data is trained using an MLP algorithm on simple network architectures to generate local functions for thermo-chemical quantities. The algorithm is validated for the so-called DLR-A turbulent jet diffusion flame using both RANS and LES simulations and the results of the PDF tabulation are compared to the standard linear interpolation method. The comparison yields a very good agreement between the two tabulation techniques and establishes the MLP-SOM approach as a viable method for PDF tabulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源