论文标题

科维白皮书

COVI White Paper

论文作者

Alsdurf, Hannah, Belliveau, Edmond, Bengio, Yoshua, Deleu, Tristan, Gupta, Prateek, Ippolito, Daphne, Janda, Richard, Jarvie, Max, Kolody, Tyler, Krastev, Sekoul, Maharaj, Tegan, Obryk, Robert, Pilat, Dan, Pisano, Valerie, Prud'homme, Benjamin, Qu, Meng, Rahaman, Nasim, Rish, Irina, Rousseau, Jean-Francois, Sharma, Abhinav, Struck, Brooke, Tang, Jian, Weiss, Martin, Yu, Yun William

论文摘要

SARS-COV-2(COVID-19)大流行对世界各地的公共卫生机构造成了重大压力。接触示踪是改变COVID-19大流行过程的重要工具。 COVID-19案件的手动联系跟踪面临着重大挑战,限制了公共卫生当局最大程度地减少社区感染的能力。通过使用移动应用程序通过使用移动应用程序的个性化对等联系人跟踪有可能改变范式。一些国家已经部署了集中的跟踪系统,但是更多的隐私保护系统提供了很多相同的好处,而没有将数据集中在国家当局或营利性公司手中。机器学习方法可以通过将许多线索及其不确定性纳入感染风险的更分级和精确的估计中来避免标准数字追踪的某些局限性。估计的风险可以为用户提供早期风险意识,个性化建议和相关信息。最后,非识别风险数据可以为与机器学习预测指标联合培训的流行病学模型提供信息。这些模型可以提供统计证据证明涉及疾病传播的因素的重要性。它们还可以根据医学和经济生产力指标来监视,评估和优化卫生政策和(DE)限制方案。但是,这种基于移动应用程序和机器学习的策略应主动减轻潜在的道德和隐私风险,这可能会对社会产生重大影响(不仅会对健康影响,而且对个人数据的污名化和滥用)产生了影响。在这里,我们介绍了“ COVI”的基本原理,设计,道德考虑和隐私策略,该策略是在加拿大开发的COVID-19 Covid-19公共点对点联系跟踪和风险意识移动应用程序。

The SARS-CoV-2 (Covid-19) pandemic has caused significant strain on public health institutions around the world. Contact tracing is an essential tool to change the course of the Covid-19 pandemic. Manual contact tracing of Covid-19 cases has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile apps has the potential to shift the paradigm. Some countries have deployed centralized tracking systems, but more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or for-profit corporations. Machine learning methods can circumvent some of the limitations of standard digital tracing by incorporating many clues and their uncertainty into a more graded and precise estimation of infection risk. The estimated risk can provide early risk awareness, personalized recommendations and relevant information to the user. Finally, non-identifying risk data can inform epidemiological models trained jointly with the machine learning predictor. These models can provide statistical evidence for the importance of factors involved in disease transmission. They can also be used to monitor, evaluate and optimize health policy and (de)confinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of `COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源