论文标题
在Grassmann歧管上学习:大规模MIMO系统的CSI量化
Learning on a Grassmann Manifold: CSI Quantization for Massive MIMO Systems
论文作者
论文摘要
本文重点介绍了波束形成的代码簿的设计,这些编码本可以最大程度地提高任何基础通道分布的平均归一化范围增益。尽管现有技术使用统计通道模型,但我们利用了一种无模型的数据驱动方法,其基础与机器学习中的基础来生成适应周围传播条件的光束成型的代码簿。关键的技术贡献在于将代码书设计问题减少到Grassmann歧管上无监督的聚类问题,其中群集质心形成了用于通道状态信息(CSI)的有限尺寸的波束成型代码,可以使用K-Means群集有效地解决。该方法扩展了以开发出非常有效的程序,用于设计具有均匀平面阵列(UPA)天线的全维(FD)多输入多输出(MIMO)系统的产品代码簿。模拟结果表明,与现有的最新CSI量化技术相比,提出的设计标准在学习代码本,降低了代码簿的大小并显着更高的波束形成增益方面的能力。
This paper focuses on the design of beamforming codebooks that maximize the average normalized beamforming gain for any underlying channel distribution. While the existing techniques use statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate beamforming codebooks that adapt to the surrounding propagation conditions. The key technical contribution lies in reducing the codebook design problem to an unsupervised clustering problem on a Grassmann manifold where the cluster centroids form the finite-sized beamforming codebook for the channel state information (CSI), which can be efficiently solved using K-means clustering. This approach is extended to develop a remarkably efficient procedure for designing product codebooks for full-dimension (FD) multiple-input multiple-output (MIMO) systems with uniform planar array (UPA) antennas. Simulation results demonstrate the capability of the proposed design criterion in learning the codebooks, reducing the codebook size and producing noticeably higher beamforming gains compared to the existing state-of-the-art CSI quantization techniques.