论文标题

从重力彩虹的$ f(r)$理论的通货膨胀

Inflation from $f(R)$ theories in gravity's rainbow

论文作者

Waeming, Areef, Channuie, Phongpichit

论文摘要

在这项工作中,我们在重力彩虹理论的背景下研究了$ f(r)$通货膨胀模型。我们选择$ f(r)$模型的三种类型:$ f(r)= r+α(r/m)^{n},\,\,f(r)= r+αr^{2}+βr^{2} \ log(r/m^{2})$和Einstein-hu-Sawicki模型和$ n,$ n,这里的$ r $和$ m $分别是RICCI标量和质量尺度。对于所有模型,彩虹函数都是以哈勃参数的幂律形式编写的。我们介绍了曲率扰动和张量比比率的光谱指数的详细推导,并将结果的预测与最新的Planck 2018数据进行了比较。借助大量的电子折叠和参数的正确选择,我们发现这项工作中存在的所有$ f(r)$模型的预测与普朗克分析非常吻合。

In this work, we study the $f(R)$ models of inflation in the context of gravity's rainbow theory. We choose three types of $f(R)$ models: $f(R)=R+α(R/M)^{n},\,f(R)=R+αR^{2}+βR^{2}\log(R/M^{2})$ and the Einstein-Hu-Sawicki model with $n,\,α,\,β$ being arbitrary real constants. Here $R$ and $M$ are the Ricci scalar and mass scale, respectively. For all models, the rainbow function is written in the power-law form of the Hubble parameter. We present a detailed derivation of the spectral index of curvature perturbation and the tensor-to-scalar ratio and compare the predictions of our results with the latest Planck 2018 data. With the sizeable number of e-foldings and proper choices of parameters, we discover that the predictions of all $f(R)$ models present in this work are in excellent agreement with the Planck analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源