论文标题
使用物理参数对周期性变星的深度生成建模
Deep Generative Modeling of Periodic Variable Stars Using Physical Parameters
论文作者
论文摘要
生成可变源的物理合理的合奏的能力对于优化时间域调查节奏以及在数据集上的分类模型的培训至关重要。传统的数据增强技术通过重新定义观察到的示例来扩展训练集,以模拟在不同(外源)条件下对特定培训来源的观察。与完全理论驱动的模型不同,这些方法通常不允许原则上插值或推断。此外,理论驱动的模型的主要缺点在于从{\ it ab intib}参数中模拟源可观察物的过度计算成本。在这项工作中,我们提出了一种可计算上的机器学习方法,以生成能够将物理参数和可变性类作为输入的周期变量的真实光曲线。我们的深层生成模型受到透明的潜在空间生成对手网络(TL-GAN)的启发,它使用了具有时间卷积网络(TCN)层的变异自动编码器(VAE)体系结构,使用\ hbox {ogle-iii}光学光曲线曲线和物理特征(例如,与gaia comportials for Ablesitive conseptional shoce foremal卷积网络(TCN)层)(例如Lyae使用RR \的温度形状关系的测试证明了我们生成的“物理增强潜在空间VAE”(PELS-VAE)模型的功效。这种深厚的生成模型(用作非线性非参数模拟器)为天文学家提供了一种新的工具,可以通过任意节奏创建合成时间序列。
The ability to generate physically plausible ensembles of variable sources is critical to the optimization of time-domain survey cadences and the training of classification models on datasets with few to no labels. Traditional data augmentation techniques expand training sets by reenvisioning observed exemplars, seeking to simulate observations of specific training sources under different (exogenous) conditions. Unlike fully theory-driven models, these approaches do not typically allow principled interpolation nor extrapolation. Moreover, the principal drawback of theory-driven models lies in the prohibitive computational cost of simulating source observables from {\it ab initio} parameters. In this work, we propose a computationally tractable machine learning approach to generate realistic light curves of periodic variables capable of integrating physical parameters and variability classes as inputs. Our deep generative model, inspired by the Transparent Latent Space Generative Adversarial Networks (TL-GANs), uses a Variational Autoencoder (VAE) architecture with Temporal Convolutional Network (TCN) layers, trained using the \hbox{OGLE-III} optical light curves and physical characteristics (e.g., effective temperature and absolute magnitude) from Gaia DR2. A test using the temperature-shape relationship of RR\,Lyrae demonstrates the efficacy of our generative "Physics-Enhanced Latent Space VAE" (PELS-VAE) model. Such deep generative models, serving as non-linear non-parametric emulators, present a novel tool for astronomers to create synthetic time series over arbitrary cadences.