论文标题

具有生成图像的语义照片操纵

Semantic Photo Manipulation with a Generative Image Prior

论文作者

Bau, David, Strobelt, Hendrik, Peebles, William, Wulff, Jonas, Zhou, Bolei, Zhu, Jun-Yan, Torralba, Antonio

论文摘要

尽管gan在综合图像中取得了成功,该图像以用户草图,文本或语义标签等输入为条件,但由于两个原因,用gans操纵现有自然照片的高级属性是有两个原因的。首先,甘斯很难精确地再现输入图像。其次,在操纵后,新合成的像素通常不符合原始图像。在本文中,我们通过调整甘斯先前学到的图像来描绘单个图像的统计数据来解决这些问题。我们的方法可以准确地重建输入图像并合成新内容,这与输入图像的外观一致。我们在几个语义图像编辑任务上演示了我们的交互式系统,包括综合与背景一致的新对象,删除不需要的对象以及更改对象的外观。定量和定性比较与几种现有方法证明了我们方法的有效性。

Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源