论文标题
击键生物识别技术应对全球大流行中的虚假新闻传播
Keystroke Biometrics in Response to Fake News Propagation in a Global Pandemic
论文作者
论文摘要
这项工作提出并分析了击键生物识别技术在内容匿名化中的使用。假新闻已成为操纵公众舆论的强大工具,尤其是在重大事件中。尤其是,在19日大流行期间,假新闻的大量传播迫使政府和公司反对失误。在这种情况下,链接多个帐户或配置文件的能力,这些帐户或配置文件在匿名藏匿时在Internet上传播此类恶意内容,可以主动识别和黑名单。行为生物识别技术可以是这场战斗的强大工具。在这项工作中,我们分析了击键生物识别识别的最新进展如何有助于将涉及100,000用户和超过100万个键入序列的实验中的行为键入模式链接起来。我们提出的系统基于反复的神经网络,该神经网络适用于内容匿名化的上下文。假设将目标用户在候选资料库中的键入内容链接起来的挑战,我们的结果表明,可以使用按键识别来将候选配置文件的列表减少超过90%。此外,当击键与辅助数据(例如位置)结合使用时,我们的系统分别在1K和100K概况组成的背景候选列表中,将获得等于52.6%和10.9%的等级1识别性能。
This work proposes and analyzes the use of keystroke biometrics for content de-anonymization. Fake news have become a powerful tool to manipulate public opinion, especially during major events. In particular, the massive spread of fake news during the COVID-19 pandemic has forced governments and companies to fight against missinformation. In this context, the ability to link multiple accounts or profiles that spread such malicious content on the Internet while hiding in anonymity would enable proactive identification and blacklisting. Behavioral biometrics can be powerful tools in this fight. In this work, we have analyzed how the latest advances in keystroke biometric recognition can help to link behavioral typing patterns in experiments involving 100,000 users and more than 1 million typed sequences. Our proposed system is based on Recurrent Neural Networks adapted to the context of content de-anonymization. Assuming the challenge to link the typed content of a target user in a pool of candidate profiles, our results show that keystroke recognition can be used to reduce the list of candidate profiles by more than 90%. In addition, when keystroke is combined with auxiliary data (such as location), our system achieves a Rank-1 identification performance equal to 52.6% and 10.9% for a background candidate list composed of 1K and 100K profiles, respectively.