论文标题

探索3D单眼对象检测的功能和限制 - 模拟和现实世界数据的研究

Exploring the Capabilities and Limits of 3D Monocular Object Detection -- A Study on Simulation and Real World Data

论文作者

Nobis, Felix, Brunhuber, Fabian, Janssen, Simon, Betz, Johannes, Lienkamp, Markus

论文摘要

基于单眼相机数据的3D对象检测是自动驾驶的关键推动器。然而,由于2D图像中缺乏深度信息,任务是不适合的。最近的深度学习方法显示了有希望的结果,可以通过学习有关环境的先验来从单个图像中恢复深度信息。几种竞争策略解决了这个问题。除了网络设计外,这些竞争方法的主要区别在于使用监督或自我监督的优化损失函数,这些损失函数需要不同的数据和地面真相信息。在本文中,我们评估了3D对象检测管道的性能,该管道可参数化具有不同的深度估计配置。我们基于摄像机内在和2D边界框的大小,自我监督和有监督的学习方法来实现一种简单的距离计算方法,以进行深度估计。 在现实世界中,无法将地面真相深度信息记录下来。这将我们的训练重点转移到了模拟数据上。在模拟中,可以自动化标签和地面真相的产生。我们评估了赛道上自动驾驶汽车的模拟器数据和现实世界序列的检测管道。研究了模拟培训对现实世界应用的好处。讨论了不同深度估计策略的优势和缺点。

3D object detection based on monocular camera data is a key enabler for autonomous driving. The task however, is ill-posed due to lack of depth information in 2D images. Recent deep learning methods show promising results to recover depth information from single images by learning priors about the environment. Several competing strategies tackle this problem. In addition to the network design, the major difference of these competing approaches lies in using a supervised or self-supervised optimization loss function, which require different data and ground truth information. In this paper, we evaluate the performance of a 3D object detection pipeline which is parameterizable with different depth estimation configurations. We implement a simple distance calculation approach based on camera intrinsics and 2D bounding box size, a self-supervised, and a supervised learning approach for depth estimation. Ground truth depth information cannot be recorded reliable in real world scenarios. This shifts our training focus to simulation data. In simulation, labeling and ground truth generation can be automatized. We evaluate the detection pipeline on simulator data and a real world sequence from an autonomous vehicle on a race track. The benefit of simulation training to real world application is investigated. Advantages and drawbacks of the different depth estimation strategies are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源