论文标题

挖掘:一种基于数据挖掘的方法,以减少问题大小

MineReduce: an approach based on data mining for problem size reduction

论文作者

Maia, Marcelo Rodrigues de Holanda, Plastino, Alexandre, Penna, Puca Huachi Vaz

论文摘要

包括数据挖掘策略在内的元启发式术的混合变化已被用来解决各种组合优化问题,并获得了卓越和令人鼓舞的结果。以前的混合策略应用了挖掘模式来指导初始解决方案的构建,从而更有效地探索了解决方案空间。解决组合优化问题通常是一项艰巨的任务,因为其解决方案空间随其大小而成倍增长。因此,在这种情况下,减少问题大小也是一个有用的策略,尤其是在大规模问题的情况下。在本文中,我们通过提出一种名为Minereduce的方法来建立这些想法,该方法使用挖掘模式来减少问题大小。我们提出了矿山的应用,以改善异质车队路线问题的启发式启发式。在计算实验中获得的结果表明,与原始的启发式和其他最先进的启发式方法相比,这一提出的启发式表现出了卓越的性能,并以较短的运行时间实现了更好的解决方案成本。

Hybrid variations of metaheuristics that include data mining strategies have been utilized to solve a variety of combinatorial optimization problems, with superior and encouraging results. Previous hybrid strategies applied mined patterns to guide the construction of initial solutions, leading to more effective exploration of the solution space. Solving a combinatorial optimization problem is usually a hard task because its solution space grows exponentially with its size. Therefore, problem size reduction is also a useful strategy in this context, especially in the case of large-scale problems. In this paper, we build upon these ideas by presenting an approach named MineReduce, which uses mined patterns to perform problem size reduction. We present an application of MineReduce to improve a heuristic for the heterogeneous fleet vehicle routing problem. The results obtained in computational experiments show that this proposed heuristic demonstrates superior performance compared to the original heuristic and other state-of-the-art heuristics, achieving better solution costs with shorter run times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源