论文标题
在离散的时间上
On Discrete Time Prabhakar-Generalized Fractional Poisson Processes and Related Stochastic Dynamics
论文作者
论文摘要
最近,所谓的Prabhakar对分数泊松计数过程的概括引起了他对适应现实世界情况的灵活性的极大兴趣。在此续订过程中,事件之间的等待时间是IID连续随机变量。在本文中,我们分析了离散时间对应物:具有整数IID室内时间的更新过程,该过程以良好的连续时间限制汇聚到Prabhakar-Generalized分数泊松过程。这些过程表现出非马克维亚特征和长期记忆效应。我们为特殊选择参数恢复了经典案例的离散时间版本,例如分数Bernoulli过程和标准Bernoulli过程,分别是分数泊松的离散时间近似值和标准泊松过程。我们得出了总体分数类型的差异方程,该方程控制了这些离散的时间流程,其中恢复了广义分数prabhakar类型的连续时间限制中的已知进化方程。我们还以Montroll-Weiss的方式开发了“ Prabhakar离散时间随机步行(DTRW)”,作为随机步行的图表时间,随着Prabhakar续订过程的离散时间变化。我们得出了总体上管理随机运动的广义分数离散时间kolmogorov-feller差异方程。 Prabhakar-Discrete-Discrete-time流程为复杂系统动力学的几个方面打开了一个有希望的领域。
Recently the so-called Prabhakar generalization of the fractional Poisson counting process attracted much interest for his flexibility to adapt real world situations. In this renewal process the waiting times between events are IID continuous random variables. In the present paper we analyze discrete-time counterparts: Renewal processes with integer IID interarrival times which converge in well-scaled continuous-time limits to the Prabhakar-generalized fractional Poisson process. These processes exhibit non-Markovian features and long-time memory effects. We recover for special choices of parameters the discrete-time versions of classical cases, such as the fractional Bernoulli process and the standard Bernoulli process as discrete-time approximations of the fractional Poisson and the standard Poisson process, respectively. We derive difference equations of generalized fractional type that govern these discrete time-processes where in well-scaled continuous-time limits known evolution equations of generalized fractional Prabhakar type are recovered. We also develop in Montroll-Weiss fashion the `Prabhakar Discrete-time random walk (DTRW)' as a random walk on a graph time-changed with a discrete-time version of Prabhakar renewal process. We derive the generalized fractional discrete-time Kolmogorov-Feller difference equations governing the resulting stochastic motion. Prabhakar-discrete-time processes open a promising field capturing several aspects in the dynamics of complex systems.