论文标题

贝叶斯对复发事件数量的推断:复发和生存的联合模型

Bayesian inference on the number of recurrent events: A joint model of recurrence and survival

论文作者

Boom, Willem van den, De Iorio, Maria, Tallarita, Marta

论文摘要

终止事件发生之前的经常性事件数量通常是感兴趣的。例如,死亡终止了个人的重新建立过程,而重新建立的数量是经济成本的重要指标。我们提出了一个模型,其中终止之前的复发数量是感兴趣的随机变量,从而实现了推理和预测。然后,根据这个数字有条件地,我们指定了复发和生存的联合分布。这种新颖的条件方法会引起复发与生存之间的依赖,例如,由于影响两者的脆弱,通常存在。复发与生存之间的额外依赖性是通过在其各自的脆弱条款上的共同分布的规范引入的。此外,通过引入自回归模型,我们的方法能够捕获复发事件轨迹中的时间依赖性。虚弱术语的非参数随机效应分布可容纳人口异质性,并允许对受试者进行数据驱动的聚类。涉及可逆跳跃和切片采样步骤的量身定制的吉布斯采样器实现后推理。我们说明了关于结直肠癌数据的模型,将其性能与现有方法进行比较,并对经常性事件的数量进行适当的推断。

The number of recurrent events before a terminating event is often of interest. For instance, death terminates an individual's process of rehospitalizations and the number of rehospitalizations is an important indicator of economic cost. We propose a model in which the number of recurrences before termination is a random variable of interest, enabling inference and prediction on it. Then, conditionally on this number, we specify a joint distribution for recurrence and survival. This novel conditional approach induces dependence between recurrence and survival, which is often present, for instance due to frailty that affects both. Additional dependence between recurrence and survival is introduced by the specification of a joint distribution on their respective frailty terms. Moreover, through the introduction of an autoregressive model, our approach is able to capture the temporal dependence in the recurrent events trajectory. A non-parametric random effects distribution for the frailty terms accommodates population heterogeneity and allows for data-driven clustering of the subjects. A tailored Gibbs sampler involving reversible jump and slice sampling steps implements posterior inference. We illustrate our model on colorectal cancer data, compare its performance with existing approaches and provide appropriate inference on the number of recurrent events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源