论文标题

在2D可集成的晶格方程中

On a class of 2D integrable lattice equations

论文作者

Ferapontov, E. V., Habibullin, I. T., Kuznetsova, M. N., Novikov, V. S.

论文摘要

我们开发了一种新方法,以分类$ u_ u_ {xy} = f(u,u _x,u_y,u_y,\ triangle_z u \ triangle _ {\ bar z} u,\ bar z} u,\ triangle_ {z \ bar z}向前/后退离散衍生物。提出了以下两步分类程序: (1)首先,我们要求方程式的无分散极限是可以集成的,即其特征性变体定义了共形结构,在每个溶液上都是Einstein-Weyl。 (2)其次,在上一步中选择的候选方程式,我们应用了通过施加合适的截止条件获得的Darboux集成性的测试。

We develop a new approach to the classification of integrable equations of the form $$ u_{xy}=f(u, u_x, u_y, \triangle_z u \triangle_{\bar z}u, \triangle_{z\bar z}u), $$ where $\triangle_{ z}$ and $\triangle_{\bar z}$ are the forward/backward discrete derivatives. The following 2-step classification procedure is proposed: (1) First we require that the dispersionless limit of the equation is integrable, that is, its characteristic variety defines a conformal structure which is Einstein-Weyl on every solution. (2) Secondly, to the candidate equations selected at the previous step we apply the test of Darboux integrability of reductions obtained by imposing suitable cut-off conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源